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Abstract
Researchers from various disciplines are concerned with the
study of affective phenomena, especially arousal. Expressed
affective modulations, which reflect both an individual’s in-
ternal state and external factors, are central to the commu-
nicative process. Bone et al. developed a robust, unsuper-
vised (rule-based) method which provides a scale-continuous,
bounded arousal rating from the vocal signal. In this study, we
investigate the joint-dynamics of child and psychologist vocal
arousal in autism spectrum disorder (ASD) diagnostic interac-
tions. Arousal synchrony is assessed with multiple methods.
Results indicate that children with higher ASD severity tend to
lead the arousal dynamics more, seemingly because the children
aren’t as responsive to the psychologist’s affective modulations.
A vocal arousal model is also proposed which incorporates so-
cial and conversational constructs. The model captures conver-
sational signal relations, and is able to distinguish between high
and low ASD severity at accuracies well-above chance.
Index Terms: vocal arousal, interaction, synchrony, autism
spectrum disorders

1. Introduction
Arousal (also referred to as activation and excitation) is a pri-
mary component in dimensional theories of emotion [1, 2],
and continues to be the focus of interdisciplinary work in do-
mains such as psychology, engineering, linguistics, and biology.
Arousal is an internal state that, like other affective constructs,
influences our thoughts and actions. For instance, a person’s
arousal level can affect the decisions they make [3, 4] and their
performance on certain tasks [5].

The transmission of multimodal affective cues is a core
facet of human communication. Perceptual tests and engineer-
ing systems have established that expressed affective cues can
be discerned from speech [6, 7, 8]. Although arousal is reliably
decoded from vocal cues, engineering tools that are broadly
applicable to unlabeled databases are lacking. State-of-the-
art supervised systems usually incorporate thousands of fea-
tures (e.g., openSMILE [9]); while large feature sets increase
capacity for modeling behavior, they reduce interpretability
and risk overfitting in cross-corpora experiments. Bone et
al. [10, 11] developed and validated an alternative unsuper-
vised (rule-based) vocal arousal rating framework that utilizes
three features (pitch, vocal intensity, and the ratio of high- and
low-frequency energy). This framework enables general, inter-
pretable study of vocal arousal with few constraints.

In human-human interaction, behavioral synchrony (or en-
trainment) between participants is central to perceptions of
overall quality. Harrist & Waugh [12] define synchrony as a
“type of interaction between two people ... an observable pat-
tern of dyadic interaction that is mutually regulated, reciprocal,

and harmonious”. Several studies have concentrated on infants
and adolescents to understand the development and importance
of entrainment processes [12, 13, 14]. Such work has reported a
higher dyadic synchrony when mothers interact with their own
infant, rather than an unfamiliar infant [13]; and that parent-
infant synchrony is predictive of symbolic play complexity [14].
Overall, the development of behavioral synchrony is seen as
key to establishing significant dyadic relationships, enabling the
child to grow socially and emotionally [12].

Behavioral synchrony computation often relies on hand-
coded behavioral signals like gaze, vocalizations, and af-
fect [15]. There is an apparent need for scalable automatic tech-
niques. Engineering methods in computing synchrony are gain-
ing attention. Studies have used automatic measures of heart
rate [15]; facial features such as smile strength, eye constric-
tion, and mouth opening [16]; and prosodic and spectral fea-
tures [17]. The present work investigates the joint-dynamics of
automatically-generated vocal arousal contours.

Autism spectrum disorder (ASD) is a highly heteroge-
neous and highly prevalent (1 in 88 children [18]) neuro-
developmental disorder characterized by social communication
deficits, social impairments, and the presence of restricted,
repetitive, and/or stereotyped behaviors [19]. Computational
models of social behavior have the potential to aid clinicians
in diagnosis, intervention, and long-term monitoring. Fur-
ther, neurobiological studies in autism need quantitative, dimen-
sional measures of behavior for improved stratification [20].
Toward this end, Bone et al. found through speech-prosodic
analysis of ASD diagnostic sessions that the psychologist ad-
justed their speech properties based on the child’s social-
communicative impairments [21, 22]. Bone et al. also inves-
tigated objective turn-taking and language cues [23], observ-
ing an overall degradation of conversational quality when the
psychologist interacted with children with higher ASD severity.
The current work extends this line of research, investigating the
joint-evolution of affect as captured by vocal arousal.

In this study, we examine child-psychologist affective syn-
chrony in relation to ASD severity. We note that vocal arousal
is a function of both internal state and external social and con-
versational factors. Thus, we additionally propose a model of
vocal arousal dynamics which incorporates both internal (self-
evolution) and external social and contextual factors. This
model is then utilized to discriminate between groups of inter-
action sessions, divided according to the child’s ASD severity.

2. Experimental Design
2.1. The USC CARE Corpus
Child-psychologist interactions are studied in the context of the
Autism Diagnostic Observation Schedule (ADOS, [24]). The
present work focuses on the ADOS Module 3, designed for



subjects who are verbally fluent as judged by the psychologist.
During administration, the psychologist leads the child through
a variety of activities, or subtasks, designed to elicit social re-
sponses. The psychologist then scores 28 codes representing
the child’s behaviors in the domains of Social Interaction, Com-
munication, and Restricted, Repetitive Behaviors. This analysis
uses the revised ADOS Module 3 algorithms [25], and the trans-
formation of the ADOS total to an ASD severity score [26]. The
ASD severity score is in the range 1 to 10, with higher scores
indicating higher severity of ASD symptoms.

The USC CARE Corpus [27] is comprised of audio-video
recordings (2 HD cameras and 2 high-quality far-field micro-
phones) of ADOS administrations. Sessions are lexically tran-
scribed based on the SALT transcription manual [28], and tem-
porally marked for utterance boundaries. Demographics of the
29 participants for this study are presented in Table 1.

As with previous studies conducted with this corpus [21,
22, 23], we examine both child and psychologist behavior.
Three licensed, research-certified psychologists with extensive
clinical experience with ASD children administered the ADOS.
Two of the psychologists were bilingual in English and Span-
ish; bilingual participants were evaluated by bilingual psychol-
ogists. Administrations were conducted in English, so small
portions of Spanish conversation are disregarded; one subject
(of 30) was excluded due to a primarily Spanish discourse.
Table 1: Demographic statistics of the 29 recorded children in
this study that were administered Module 3 of the ADOS.

Category Count/Statistic
Age (years) mean: 10.0, std. dev.: 2.6, range: 5.8-15.0
Gender male: 23, female: 6
Native language Spanish: 9, English: 10, Sp&Eng: 4, unk: 6
Ethnicity Hispanic: 20, White/+Other: 8, AF-AM: 1
ADOS module #3: 29
ADOS diagnosis autism: 18, ASD: 5, below ASD cutoffs: 6

2.2. Vocal Arousal
Expressed vocal arousal is quantified using a method proposed
in [11]. This rule-based method can provide a scale-continuous
arousal rating, bounded in the range [-1,1], from the vocal sig-
nal without the need for any manual labeling. The arousal rating
is built upon three knowledge-inspired features, whose individ-
ual scores are fused to improve reliability [11]. The method
performs consistently across multiple corpora, achieving both
high correlations with labels and impressive binary classifica-
tion performance.

The framework tracks a speaker’s variation from a base-
line (e.g., higher pitch indicates higher arousal). This baseline
data can be neutral-labeled or unlabeled (global normalization).
In the case of neutral-data normalization, positive (negative)
ratings can be interpreted as higher-than-neutral (lower-than-

neutral) arousal. If no labeled data is available, the method is
still able to rank instances according to perceived arousal via
global normalization; here, the relative value of instances still
has meaning, but the absolute value is less interpretable.

In this corpus, vocal arousal is extracted for both child and
psychologist. The data is organized into turns. A turn consists
of consecutive, uninterrupted utterances from a single speaker.
Utterances that are entirely overlapped by another speaker’s
turn are excluded (rather than performing source separation),
while overlaps that represent speaker changes are maintained.
Sessions vary from 76-326 turns for each participant. Features
are extracted within the voiced frames of a turn. Vocal arousal
is computed for each turn with global speaker-normalization.

Sample vocal arousal streams for child and psychologist are
shown in Figure 1. Coupling is apparent in this 50 turn sam-
ple; the Spearman’s rank-correlation coefficient between the
two arousal contours is ρS=0.66. A varying lead-lag relation-
ship is also evident: In the first segment (“Psych leads”), the
psychologist’s arousal precedes the child’s arousal by one turn.
(By convention, time slot t contains the arousal from the psy-
chologist at turn k and the following turn from the child, k+1.)
In the second segment (“Child leads”), the child’s arousal pre-
cedes the psychologist’s arousal by approximately two turns.

2.3. Synchrony Measures
We consider two measures of synchrony: cross-correlation
with peak-picking and Granger causality. Windowed cross-
correlation with peak-picking [29] is used to evaluate both the
magnitude of interaction between vocal arousal streams (peak
absolute value of cross-correlation), and the lead/lag relation-
ship (corresponding peak index). Correlation can be either pos-
itive or negative, reflecting synchronous or asynchronous inter-
action; we consider the absolute magnitude of the correlation.

Granger causality [30] is a statistical method for determin-
ing if one signal is useful in predicting another; in this case,
through linear autoregressive models for time series predic-
tion [31]. Given time-varying signals X(t) and Y(t), if predict-
ing Y with previous values of X reduces the residual signal en-
ergy compared to using Y alone, then X is said to Granger-cause
Y. Autoregressive (AR) prediction is depicted in equation 1, for
which Aj & Bj are AR coefficients and E(t) is the residual
error. Three Granger features are extracted [32]: the strength of
Granger-causality from the child to the psychologist (and vice-
versa), taken as the logarithm of the F-statistic; and the child’s
causal flow, the difference of the out-degree of Granger causal-
ity minus the in-degree. Features were extracted within over-
lapping windows. The number of lags for Granger analysis was
decided per window through Bayesian Information Criterion.
Given the limited length of these sessions, Granger-causality
magnitudes were included in computations whether or not they
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Figure 1: Example vocal arousal streams from child (C) and
psychologist (P) with highlighted regions of synchrony.
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Figure 2: Example vocal arousal streams for child (C) and psy-
chologist (P) with dominance (Dom) and backchannels (Bc).



reached statistical significance. All computations are made us-
ing the GCCA toolbox [33]. A similar approach was employed
to model dominance effects with non-verbal behaviors in [34].

Y (t) =

p∑
j=1

Aj ∗ Y (t− j) +

p∑
j=1

Bj ∗X(t− j) + E(t) (1)

2.4. A Conversational Model of Vocal Arousal
Vocal arousal is an expressed signal that is not only reflective
of internal arousal, but also social and conversational factors.
Vocal arousal evolves as a function of the interaction; in this
data, the coupling is quite significant (Section 3.1). Since a
person’s vocal arousal depends on their conversational partner’s
vocal arousal, this is one component of the model we propose
in Figure 3; corresponding signals are shown in Figure 2.

The vocal arousal for a particular turn is certainly depen-
dent upon the spoken content. For this purpose, we include
dialogue acts in our model of vocal arousal. For instance, com-
pared to acknowledgments, backchannels are expected to be of
lower volume and pitch movement; this is because backchan-
nels are spoken with the intention of not overtaking the floor,
whereas acknowledgments assert an opinion [35]. Since these
features are positive correlates of perceived arousal [8], we may
also expect vocal arousal to be lower for backchannels.

The evolution of vocal arousal contours is additionally con-
tingent on the style of the conversation (e.g., interview or casual
conversation). We restrict our focus to a speaker’s conversa-
tional dominance (power or control). Dominance is a global
factor of an interaction, but it varies locally as well. For exam-
ple, Wollmer et al. [36] investigated the temporal modeling of
dominance using acoustic features. Acoustic features like vocal
intensity influence perceptions of dominance [37]. We include
temporal dominance in our vocal arousal model such that any
dependency may be captured and quantified.

Arp,k Arc,k-1 DAp,k Dmp,k 

Figure 3: Abstracted conversational model of vocal arousal
(psychologist’s view shown). Note: p - psychologist; c - child;
Ar - vocal arousal; DA - dialogue act; Dm - dominance; bold
indicates a vector ending at turn k.

2.4.1. ASD Severity Classification with Arousal Model
We implement the proposed model as a vocal arousal sequence
prediction model using linear-chain conditional random fields
(CRFs). The vocal arousal of speaker A is predicted by the pre-
viously mentioned social and conversational factors: speaker
B’s vocal arousal at the previous turn (plus ∆ and ∆∆), speaker
A’s current dialog act, and speaker A’s current dominance.
Since dialogue act annotations are not available for the USC
CARE Corpus, we restrict the dialogue act set to backchannels
and others. Backchannels are defined as turns which are at least
one-third composed of words from the set listed in Table 2; this
set overlaps with the most common backchannels in the Switch-
board corpus [38]. We accept that false positives will occur.

Dominance is perceived through several cues. Prosody is
already used in vocal arousal, so we rely on another feature.
Total speaking length has been shown effective in dominance
prediction [37]. We devise a temporal dominance feature based
on turn length. For a dyadic conversation, we define speaker
A’s dominance at turn k as the ratio of the length of speaker A’s
previous turns to the total length of speaker A’s and speaker B’s

previous turns; we use 3 previous turns with a decaying weight
function of [0.15, 0.30, 0.55] for turns [k-2, k-1, k].
Table 2: List of words defined as a backchannel in our corpus.

List of backchannel words
‘mm’, ‘hmm’, ‘mm-hmm’, ‘uh’, ‘huh’, ‘uh-huh’, ‘um’, ‘ah’,
‘oh’, ‘okay’, ‘yeah’, ‘yes’, ‘cool’, ‘nice’, ‘alright’, ‘I see’, ‘my
goodness’, ‘oh no’

In Section 3.2, we perform binary classification of ASD
severity with CRFs through a leave-one-session-out approach.
We define high-severity ASD as an ASD severity of 7 or higher.
This division produces an approximately equal distribution of
14 high-severity and 15 low-severity sessions. CRF models are
trained with the HCRF toolbox [39]. CRFs are first trained for
each class to predict speaker A’s vocal arousal sequence given a
set of features. Then maximum likelihood classification is per-
formed by selecting the model that produces the highest like-
lihood for the observed arousal sequence of the test session.
Rather than computing the likelihood of the exact sequence, we
define the sequence likelihood as the product of the likelihood
of each observation in the sequence. Vocal arousal is quan-
tized into three equally-balanced categories per session (high,
medium, and low). Dominance (Dm) is quantized into three cat-
egories as well: Dm<=1/3, 1/3>Dm<=2/3, and Dm>2/3.

3. Results and Discussion
In Section 3.1 the various measures of arousal synchrony are
investigated in relation to ASD symptom severity. Then in Sec-
tion 3.2, we model the arousal dynamics conditioned on other
relevant social and conversational features; the content captured
by this model is evaluated through a classification task.

3.1. Vocal Arousal Synchrony
The social-affective exchange between child and psychologist
is expected to differ if the child has social-communicative dif-
ficulties. In this section, the synchrony between vocal arousal
signals is related to the severity of the child’s ASD symptoms.

First, we consider the strength of coupling between the
signals, calculated as the maximum absolute cross-correlation
value. In order to capture different styles of interaction (e.g.,
synchrony/asynchrony or varying linear predictive coefficients
with Granger analysis), the sessions are windowed. Window
sizes (Ws) of 25-70 turns are used with a step-size of Ws/2.
Within each window, the lag that maximizes absolute correla-
tion is chosen; then the median coupling and lag are computed
across all windows in a session. Coupling magnitude is medium
in the sessions: mean=0.41 (stdv.=0.12) for Ws=25. How-
ever, no significant relation is observed between this coupling
magnitude and ASD severity (p>0.05) for any window size.

Next we ask the question, ‘Who leads the affective ex-
change and how does it relate to ASD severity?’ This topic
is first examined using cross-correlation with peak picking. Re-
ferring to Figure 4, a significant positive correlation frequently
occurs between peak-lag and ASD severity (4 times p<0.05,
twice p<0.10, and 4 times p>0.10). This indicates that as ASD
severity increases, the child tends to lead the arousal coordina-
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Figure 4: Correlation between lag (positive when child leads)
and ASD severity vs. window length.



tion more, as illustrated in Figure 5. For very low ASD severity,
the psychologist leads the interaction; but for very high ASD
severity, the child often leads. However, it is uncertain whether
this occurs because the child is less influenced by the psychol-
ogist, or because the psychologist is more attuned to the child.

Figure 5: Lag vs. ASD severity forWs=30. ρS=0.49 (p<0.01)

In order to gain insight into the causal structure of the in-
teraction relative to ASD severity, we utilize Granger causality
analysis. The results (displayed in Figure 6) vary somewhat
according to window size. The child’s influence on the psy-
chologist (FC−>P ) is not statistically significantly related to
the child’s ASD severity (p>0.05) for any window size. But
the psychologist’s influence on the child (FP−>C ) is found to
decrease with higher ASD severity forWs=35 (p<0.05). Also,
the child’s causal flow (cf(C)) is significantly more outward
given higher ASD severity for Ws=45 (p<0.05). These ob-
servations suggest that a child with higher ASD severity is less
influenced by the psychologist’s vocal arousal. No significant
relation to ASD severity is found for the psychologist’s attune-
ment to the child’s behavior. While these results cohere with the
cross-correlation analysis, they should be interpreted cautiously
since few parameter settings showed significance.
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Figure 6: Correlation between Granger causality parameters
and ASD severity vs. window length. FC−>P is the magnitude
of interaction for the child G-causing the psychologist’s behav-
ior, and vice-versa for FP−>C . cf(C) is the child’s causal flow.

3.2. Classification with Conversational Model
The relationships between a speaker’s vocal arousal and other
social (i.e., partner’s vocal arousal) and conversational (i.e.,
backchannels and dominance) factors may capture social-
communicative patterns associated with ASD severity. In this
section, we perform classification of high and low ASD sever-
ity groups using CRF vocal arousal predictive models.

First, we validate that the model captures statistical rela-
tions between vocal arousal and the proposed features by exam-
ining perplexity. Perplexity is calculated with whole sequence
prediction via leave-one-session-out cross-validation. Since the
vocal arousal is evenly distributed among three levels, maxi-
mum perplexity is log2(3)=1.59. We find a small decrease
in perplexity when using backchannels or dominance as fea-
tures. The largest gain comes from including the partner’s
vocal arousal; recall that arousal coupling is rather strong in
this database. Thus, the model captures information about the
relation between feature streams. The remaining question is
whether information is discriminative.

Table 3: Model perplexity as a function of feature input.
feature baseline partner backch. dom. all
perplexity psych 1.59 1.49 1.55 1.57 1.46
perplexity child 1.59 1.48 1.57 1.58 1.47

The results in Table 4 indicate that the model can discrimi-
nate between high and low ASD severity. Predicting the psy-
chologist’s or child’s vocal arousal with the preceding vocal
arousal of the other speaker achieves above 50% unweighted
average recall (UAR), but this is not significantly above chance.
The same is observed with the other features used in predicting
the child’s vocal arousal. Fusion decreases performance, likely
due to insufficient data size. Interestingly, the relationships of
the psychologist’s vocal arousal with backchannels (80% UAR)
and dominance (79% UAR) discriminate ASD severity.

Table 4: Classification performance in UAR. Note: bold indi-
cates significance above chance at α=0.01 (N=29).

feature chance partner backch. dom. all
predict psych 50% 58% 80% 79% 75%
predict child 50% 55% 59% 62% 48%

Conditional probability tables may support interpretation.
For backchannels, the largest difference appears to be the prob-
ability of low vocal arousal given the current state is a backchan-
nel, or p(Arp,k=low|BCp,k=true). This probability is higher
for the high ASD severity group (0.57 vs. 0.49). This re-
sult could occur if the psychologist is more cautious of taking
over the floor during backchannels for the children with higher
ASD severity. For dominance, there is some difference between
groups in the conditional probabilities p(Arp,k|Dmk) for high
and low dominance, but the interpretation is less certain. We
do note that the psychologist is more dominant (mean of Dmp)
for the high ASD severity group (p<0.05). Still, the proposed
vocal arousal model captures relations between vocal arousal
and relevant feature streams that is informative of ASD severity.
There is again the intriguing finding that the psychologist’s be-
havior alone is informative; this result mirrors findings that the
psychologist adjusts prosody, turn-taking, and language behav-
ior relative to the child’s social-communicative difficulties [23].

4. Conclusions and Future Work
We investigated how the social-affective interaction between
child and psychologist varies according to ASD severity. Vocal
arousal is demonstrated to be a useful automatic measure for
affective synchrony studies. The findings reveal that the child
with higher ASD severity is less responsive to the psychologist,
and thus appears to lead the affective exchange. We also pro-
posed a vocal arousal model that incorporates social and conver-
sational influences. The model discriminated between sessions
involving children with high and low ASD severity, using only
the psychologist’s behavior.

Future work will seek to refine the conversational model
and evaluate on a larger conversational database. We believe
that affective-dynamic analysis can provide key insights and ad-
vancements toward one of the major goals of Behavioral Signal
Processing [40], providing tools that support clinicians.
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